eSMART Factory Conference 2020

eSmart Factory 2020 - Outline Program

HOME / eSmart Factory 2020 - Outline Program

eSmart Factory 2020 - Program - Day One

--No Content

--No Content

Industry 4.0, IIOT, smart manufacturing, digitalization - various initiatives around the world are driving the emergence of advanced technologies within manufacturing. After the term "Industry 4.0" originally noted first ever back in 2011, today this initiative developed a momentum worth the term "fourth industrial revolution". But how much of the hype of digitalization is actually applicable to manufacturing? During this session the audience learns how Siemens steadily improved their manufacturing operations by applying an own definition of digitalization called Digital Enterprise Suite. Furthermore, additional use cases will be introduced reaching from Digital Twins over machine learning towards predictive maintenance embracing the overall concept of Industry 4.0 and ultimately benefit to manufacturers, customers and suppliers such as machine builders.

David is the Global Account Manager of Siemens specialized on the Electronics industry solely. For more than 15 years David gained an intense working experience in the field of Automation in Germany and Asia throughout the complete value chain including manufactuerers, EMS and End Customers. David gained domain knowledge along all aspects of Automation and Digitalization including IT-Security and industrial networks covering a holistic approach beyond the Industry 4.0 scope. He holds an Master degree in Automation and China Business Studies as well as an MBA from Mannheim Business School.

It is widely agreed that how we utilize the various forms of data now available across all of the various manufacturing technologies, will differentiate manufacturing in a revolutionary way. The question of course, is how. In reality, we already have experienced people who know how to run our factories. We may acknowledge that certain operational practices may need modification as Smart manufacturing technologies are introduced, but is there a truly disruptive change on the horizon that the analysis of data will create? Something that perhaps we were not expecting?

In this presentation, we explore the real-world potential that manufacturing data analysis will provide, showing how the results of analysis will be delivered and executed. We are not talking about just another report. Included are real-world, disruptive, and very disruptive technology changes.

Hemant Shah is group director of product management for PCB products at Cadence. He joined Cadence in late 2000 and is based in Chelmsford MA. Shah led the effort to create an industry wide consortium of design and supply chain companies to get IPC-2581 – the standard for transferring PCB design data to manufacturing – adopted. Prior to managing the PCB and FPGA products, he managed the Allegro Signal and Power Integrity products for PCB & IC Packaging. Shah also led an industry wide effort to get a new algorithmic modeling standard (IBIS-AMI) approved and adopted.

Prior to joining Cadence Hemant worked at Xynetix Inc. and before that at Intergraph Corporation. He is passionate about developing, marketing leading edge software products for PCB design.

Michael Ford, Working for Aegis Software provides him the opportunity to apply his many years of electronics assembly manufacturing experience, to drive both business and technology solution innovation that satisfies evolving needs in digital manufacturing.
Starting his career with Sony, including eight years working in Japan, Michael has created many solutions for manufacturing that blend a deep and broad knowledge of manufacturing with evolving software technologies. Today, Michael is an established thought leader for Industry 4.0 and digital Smart factories, an active contributor to industry standards together with the IPC, in the areas of the Connected Factory Initiative (CFX), traceability and the digital factory platform.

Sponsored by Koh Young

Greg Vance is a Sr. Project Engineer on Rockwell Automation’s Printed Circuit Board Assembly Advance Manufacturing Engineering Team focusing on manufacturing and business process improvements. He has worked at Rockwell Automation for 25 years in various roles supporting Electronic Assembly process development and as a Lean Six Sigma Project Manager. Greg holds a Bachelor of Science in Mechanical Engineering from the University of Akron and is a certified Six Sigma Master Black Belt. On a personal note, he is married to Amy with two children, Jenna and Jared and resides in Brunswick, Ohio.

Cobotics is already improving efficiencies in factory floors by delegating repetitive, dangerous jobs to robots, but there’s a broader trend in robot efficiency - moving the ratio of 1 human to 1 robot, to a 1 to many. The operators of the future will need to view and react to data from their entire factory to manage robotics fleets. To achieve this transition, a greater degree of observability is needed. In this presentation, you will learn how to root cause issues, improve robotics efficiency, and address underutilization in your factory through analytics. Using a functioning simulated factory, we’ll show how you can automatically stream data to an observability platform and reduce your time to insight.ly.

Head of Solutions, Formant. Previously, Director of Cloud Infrastructure, Savioke, and Head of AR UI, CastAR. Passionate about robotics at scale, robot-human interaction, and robot shaped data.

-- No Content

The term "Industrie 4.0" was used for the first time in 2011 at the Hannover Fair. In October 2012 the Working Group on Industry 4.0 presented a set of implementation recommendations to the German federal government.Industry 4.0" refers to the concept of factories in which machines are augmented with wireless connectivity and sensors, connected to a system that can visualise the entire production line and make decisions on its own.Industry 4.0 fosters what has been called a "smart factory". Within modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralized decisions. Over the Internet of Things, cyber-physical systems communicate and cooperate with each other and with humans in real-time both internally and across organizational services offered and used by participants of the value chain. So it’s been around for a while and is well defined with the keys being connectivity and ‘smart sensors’ to monitor operations and feedback data, we also see that this is NOT ‘lights out factory’ as it also mentions communicating and cooperating with humans, but not at what level this happens.This presentation will evaluate SMT production and inspection machines and attempt to define their status and potential to act as ‘smart sensors’, the first building blocks towards i4.0, this will lead to the answer to the question in the title.The author will visit Apex 2020 to gauge the latest state of the preparedness of the equipment and middle ware suppliers and add this to his presentation

A fully qualified engineer, Keith has over thirty years’ experience in Electronics Manufacturing. He is well known and respected for presenting technical papers at many high-profile events around the world and for his many published articles and interviews. He started his career in this industry with bare printed circuit boards in the early days of multi-layer technology, moving through to contract manufacturing. He had ten years’ experience with advanced materials and soldering systems before working with high technology x-ray and AOI Systems, again for 10 years. Then for almost 3 years Keith worked as a technology and business consultant, assisting many of the major industry names, from 2017 to 2019 he was Global Sales Director of the leading X-ray manufacturer. Recently reverting to a Consultancy role allowing him more freedom to pursue other projects, including i4.0.He was Chairman of the SMART Group for 11 years and is now Chairman of the recently formed SMTA Europe, in 2018 he was presented with the SMTA International Leadership award.

Recently reverting to a Consultancy role allowing him more freedom to pursue other projects, including i4. He was Chairman of the SMART Group for 11 years and is now Chairman of the recently formed SMTA Europe, last year he was presented with the SMTA International Leadership award.

The Smart Factory is starting to become a reality, as part of the over-arching Industry 4.0 paradigm. With the technology enablers such as Industrial internet of things (IIOT) and cloud computing, the electronics manufacturing operations technology (OT) are at a converging course with traditional information technology (IT). Beyond the challenges of data acquisition and transformation, the true 'proof of the pudding' is in the quick Return Of Investment (ROI) from advanced analytics. This is where domain knowledge application into the data science is paramount. We will share examples of successful profitable implementation of applied machine learning in the electronics manufacturing line, where measurement science meets data science using analytics .

The new SEMI Automation Standards family includes M2M communication standards for improving the communication between surface mount technology (SMT) assembly line equipment. The standard is a SMEMA-replacement for TCP-IP and PLC-based operating systems.  The standards were created with the objective of minimizing set-up times and design changes.  It also enables wireless connectivity for automatic-guided vehicles (AVGs). This presentation will provide the background and highlight the benefits of the new standards, as well as the recent adoptions and integrations. 

 

As Vice President of Collaborative Technology Platforms, Tom Salmon works with SEMI’s staff to ensure that members, standards users, and volunteers worldwide receive maximum value from their association with SEMI. Additionally, he manages a number of SEMI’s business and technology communities, including the Fab Owners Alliance, SEMI’s Smart Manufacturing initiative, the Electronic Materials Group, Advanced Packaging, and Secondary Equipment and Applications groups. Before joining SEMI, he held several management positions in manufacturing, logistics, customer relations, and sales.

 

Salmon is a member of the Heterogeneous Integration Roadmap Committee, the IEEE and the American Society of Association Executives, and holds a BA from the University of Minnesota and a Level One Proficiency Certificate from Japan’s Ministry of Education.

 

Sponsored by Koh Young

The world’s most innovative brands and established corporate symbols are building rockets, autonomous vehicles, medical devices, robots, and consumer electronics as quickly as they can innovate—but many of them are trying to build the tech of tomorrow while still relying on yesterday’s dated contract manufacturing processes for prototyping. For the average electronic device (regardless of industry or application), it takes fourteen iterations before it goes to market. Using the traditional contract manufacturing PCBA (printed circuit board assembly) model, each iteration alone takes up to three weeks to complete—and these iterations are largely completed behind closed doors, offering little transparency to engineers and insight into any potential design flaws or engineering issues. The chief defect of the traditional contract manufacturing model is that all of the machines and people in the smart factory are analog and disconnected. By leveraging a software-based platform that can automatically configure, operate, and monitor processes like prototyping and PCBA, today’s smart factories can fill the communication gap between designer and manufacturer and accelerate the iteration sequence. This use of IIoT automates the flow of information from the engineer’s design to the machines and the people on the smart factory floor in a continuous cycle of design, build, and test -- enabling designers and manufacturers to work synergistically in an end-to-end feedback loop to ensure quality, speed, and accuracy in PCB assembly. In this presentation, Shashank Samala, Co-Founder and Product Strategy Lead, Tempo Automation, will explain how a smart factory can leverage a software-based platform to increase levels of precision, predictability, and speed and, ultimately, empower engineers to bring their innovative technologies to market faster.

Shashank Samala is a Tempo Co-Founder and Product Strategy Lead. He was named in Forbes’ 30 Under 30 in 2016. Previously, Shashank was instrumental in spinning up Square in New York City. While at Square, he was struck by how slow the hardware iterations for the credit card readers were (months to years), while on the software side, iterations were measured in hours. Determined to help electrical engineers build their hardware faster, he cofounded Tempo Automation. With Shashank’s vision, Tempo has built a robotic factory that can take electrical engineers’ projects from design-to-order-to-assembled circuit boards in hand in as fast as 3 days.

The following presenters will be invited to share their insight and knowledge in an interactive panel discussion, engaging with the audience”.

David Rogers

Michael Ford

Keith Bryant

Tom Salmon

See you on Day Two - Thursday, March 5th

Discover the full potential of a digitally optimized factory and the benefits that can be derived from implementing a Digital Twin at the design phase to reduce expensive and timely turns before production. Follow the digital journey throughout the manufacturing process and see demonstrations of real closed-loop DFM, materials management, line optimization and more...

eSmart Factory 2020 - Program - Day Two

--  No Content

The story of a modern global manufacturer is one of ever-changing demand, fast deliveries, and quick decision-making. An influx of industry 4.0 technologies empowers manufacturers to meet these increasing challenges, but only after proliferation has been achieved. How can standardization be reached amid the complexities of a global enterprise? In this talk, we will explore how Flex unites its broad and diverse collection of factories and capitalizes on site-specific lessons learned to realize i4.0 at scale.

 

A regional lead for European i4.0 initiatives, John Pertsch drives standardization across the expansive network of Flex factories. With a background in industrial automation, quality, and technical program management, John has spent the past three years developing advanced manufacturing and i4.0 activities.

-- No Content

In today’s world, the electronics industry requires a fully optimized solder paste pattern. Stencil printers reach their limitations, where the challenge is to achieve an optimum print pattern with small board-to-board variations. These limitations can result in too little or no paste in difficult areas on the board, leading to lower quality and expensive, time consuming rework. Mycronic’s AI² solution inspects any solder pattern delivered from the stencil printer with a 3D SPI and send the data to a jet printer which will immediately repair and/or optimize the pattern. This guarantees today’s most relevant industry requirement: “A zero defect production and no scrap!”

 

Clemens Jargon serves as VP Global SMT at Mycronic AB. He has more than 25
years of experience in various functions and business areas and profound skills in
International Management in the Factory Automation Industry (SMT, Dispensing,
Coating, Automation & Robotics), Telecommunication as well as Semiconductor.
He is a recognized Industry 4.0 expert.

Sponsored by Koh Young

In the modern production environment, AOI system hardware and advanced algorithms are key to achieving highly accurate results in the shortest amount of time. However, in and of itself, it is not enough; without proper, easy and transparent programming procedures, even the most advanced hardware and algorithms will not produce the desired level of performance, and will provide little benefit. Consequently, the importance of an automatic, user-independent program creation process cannot be overrated.Developing an auto-programming functionality, which will work flawlessly in real production conditions, requires overcoming many challenges: The variety of PCB and component designs is immense; and the SMT components’ material, quality, marking, color and shape are insufficiently standardized. Additionally, the assembly and the reflow processes differ from product to the next, often in the same production line. Customer requests and q uality criteria may greatly vary, even for those who work at the same IPC level. To effectively cope with all these challenges, the use of artificial intelligence (IA) algorithms is invaluable. AI allows the AOI system to gather experience, constantly learn and improve its results. ALeader has been investing intensive efforts and resources in developing such an AI solution for several years. The abundant experience it has gathered from thousands of ALeader AOI installations in numerous production sites provides ALeader’s team with an advantage, allowing it to make quicker and more effective progress. The first results of its R&D efforts were presented in November 2019 at the Productronica show in Munich: they demonstrated the ability of ALeader’s Full 3D AOI ALD8720S to automatically define 70-80% of all the components on the board including size, positioning, solder joint inspection, OCR and color.

Problem:
Dedicated tooling is considered a superior technology for SMT machines with critical impact on quality in the stencil printing process. Most SMT assembly will not use this method due to:
A. Delay in acquiring the tooling
B. High cost
C. Concern about sending sensitive assembly data to third parties
Solution:
Disruptive technology using subtractive manufacturing to build dedicated tooling in- house on-demand.
Tooling made from material with a level of pliability optimized for SMT applications

Lunch Break

Mike Bixenman Chief Technology Officer

It's very exciting to hear the new technologies and innovative techniques moving forward in the electronics industry. Unfortunately, the final and secure disposition of electronics and electronic components is something that is given less thought. We simply dispose of it and hope it disappears. However, the potentially detrimental environmental effects and potential security risk posed by improper disposition has seen a large detriment in the environment and a security threat as data-bearing items have ended up in the wrong hands or back on the market as an unregistered/counterfeit item. Abington Reldan Metals is located in a secure facility that offers full-documentation/compliance and domestic final destination processing.

What data on materials, how does he make it smart

Sponsored by Koh Young

The purpose of the talk is to explore how important the culture within the company needs to change before, during and after any transformation or 4.0 investment. From our own experience in matching manufacturers with the right technology, and supporting them throughoutthe process, we feel that culture is a key element and that a significant part of a successful transformation is know how to deal with this transformation internally, whatever its training before the transformation itself, of the monitoring afterward). We believe there is a cost of change and that this is mainly underestimated and underrated, leading to the failure of a lot of projects. This talk will not focus at all on our company product as mentioned in your call for abstract.

Amira Boutouchent is the co-founder and CEO of Bridgr, a technology company that helps small and medium manufacturing companies find and collaborate with the right curated experts to digitalize their operations. Amira is a computer science engineer from Algeria and held an MSc in Management from Montreal. She is key influencers in the Quebec manufacturing ecosystem with a strong storytelling as she is one of the rare women under 30 that launched a startup that operate within the manufacturing world, right after graduating! Amira is a Women in Tech Ambassador and a published author.

-- No Content

Thank you for attending!  We will see you next year at the 2021 eSmart Factory Conference!